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Abstract
Parasites represent a great proportion of the world’s living organisms and are of overwhelming significance because of their impact on hosts

(evolutionarily, medically, agronomical and economically). The knowledge of the population biology of such organisms is thus of fundamental

importance to population biologists. Most parasites cannot be studied by direct methods and their biology has to be assessed via indirect means,

most notably using molecular markers. In this review, we present the molecular tools, the null models employed, the statistical tools available and

the kinds of inferences one can make when using molecular markers to study the ecology/epidemiology of host–parasite systems (molecular

ecology/molecular epidemiology). We conclude with relevant examples, most issued from our laboratory, to illustrate the pros and cons of such

methods for the study of parasites, vectors, micropathogens and their hosts and briefly discuss future needs.

# 2006 Elsevier B.V. All rights reserved.

Keywords: Population genetics; Molecular epidemiology; Parasites; Vectors; Molecular markers
1. Introduction

Parasites represent a significant part of the described

biodiversity (De Meeûs and Renaud, 2002) and despite the

recent explosion of molecular studies, those conducted on such

organisms are still too few (Criscione et al., 2005). This may be

largely explained by the fact that infectious agents and their

vectors are generally difficult to study. Because of their small

size, location, biology and behaviour, direct observation of their

population biology is almost impossible. Thus, the ecology,

reproductive modes and/or strategies, dispersal, population

sizes of parasites and vectors can mainly be assessed through

what Slatkin (1985) called ‘‘indirect methods’’ (Nadler, 1995;

De Meeûs et al., 2002a,b). In this case, the indirect methods are

those that use polymorphic molecular markers and the variation

of such polymorphism within and between pre-defined sub-sets

of individuals (most of the time referred to sub-populations or

sub-samples). The basic and reasonably realistic assumption
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being that the distribution of genetic variation should reflect

ecologically relevant population parameters, such as those cited

above. The knowledge of such parameters is not simply an

academic matter or esoteric endeavour (Milgroom, 1996;

Tibayrenc, 1998, 1999; Taylor et al., 1999; Criscione et al.,

2005). ‘‘Population structure and mating system of pathogens

are tightly linked biological phenomena with crucial con-

sequences on the epidemiology of transmissible diseases’’

(Tibayrenc and Ayala, 2002). It ‘‘can be crucial for disease

management’’ (Milgroom, 1996) as well as for ‘‘research aimed

at treatment and prevention’’ (Taylor et al., 1999) and for the

‘‘safe evaluation and prediction of drug and antibiotic

resistance’’ (Tibayrenc, 1999). The investigation of the

population genetics of infectious diseases and their vectors

has been termed genetic epidemiology or molecular epide-

miology (Tibayrenc, 1998). This method has an additional

bonus: it uses genetic and thus heritable information that can be

informative even if the event responsible for the observed

pattern is not currently occurring (i.e., it provides historic

information). Intensive field observation is therefore not

necessarily required to obtain useful information (e.g.,

Prugnolle and De Meeûs, 2002). The study of genetic variation
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Box 1. The effective size of a population, usually desig-

nated by Ne, enables one to quantify the rate at which a

population looses its genetic diversity. Indeed, the reci-

procal of the effective size (1/Ne) gives the long-term

probability that two randomly sampled genes in the

population are replicates (or descend) from a single

gene in the parental generation. Such repeated ‘‘coa-

lescence events’’ of several genes into a single gene

imply that other genes do not contribute to the future of

the population. Hence, genetic diversity is lost. The ratio

of the actual census size Nc to the effective size Ne of a

population is a measure of the dynamics of quantities

linked to genetic diversity (e.g., heterozygosity) in the

population under scrutiny compared to an ‘‘ideal’’

population. This ‘‘ideal’’ population is in fact a popula-

tion that loses genetic diversity at rate of 1/Nc per

generation so that its effective size is equal to its census

size. Such a condition is met for populations of semel-

parous monoecious individuals mating at random and

living in a constant environment with no selective pres-

sure. As an example of a population, which loses

genetic diversity faster than the ‘‘ideal’’ one, we can

consider 100 dioecious individuals with an uneven sex

ratio. The effective population size of a herd with 1 bull

(Nm = 1) and 99 cows (Nf = 99) yields Ne = 4NmNf/Nc � 4

(e.g., Hartl and Clark, 1989, p. 86), i.e., a 25-fold decrease

compared to the census size (Nc = Nf + Nm = 100). Under

such a scenario, genetic diversity is lost very rapidly.

Other factors such as population subdivision might also

be important. A population will better maintain genetic

diversity if it is subdivided. For instance, the extreme

case of total subdivision (no gene flow between sub-

populations) leads to an infinite effective population

size because genetic diversity is frozen at the global

population scale, even if it is lost locally. An excellent

review on the computation of Ne in parasitic organisms

can be found in Criscione and Blouin (2005a).
in natural populations of parasites and vectors can give access

to key information on their ecology and evolutionary potential,

but this, of course, requires a continuously growing set of

statistical and population genetics tools. The aim of this paper is

to review these tools, their power and limits along with their

concept bases and biological assumptions. For more general

and theoretical reviews, readers may refer to the excellent

papers from Criscione and Blouin (2005a) and Criscione et al.

(2005). The review is subdivided into four parts. First, we

briefly describe the different kinds of genetic (molecular)

markers that are currently available and discuss their merit.

Second, we list the different population genetics concepts and

tools required. Third, we address the statistical issues

associated with the analysis of these markers. Finally, we

discuss different case studies, mainly chosen from work

performed in our laboratory, as an illustration of how these tools

can be used. A glossary where most technical words are defined

will help the reader to follow the presentation.

2. What is a genetic marker?

2.1. Preliminary notions

A genetic marker is a portion of nucleic acid (e.g., DNA) or

the product of a portion of nucleic acid (protein) from the

organism under scrutiny. To make biological inferences, the

variation of the same portion of DNA has to be studied across

individuals from different sites. It is important that this portion

of DNA (or its product) has the same localisation in the genome

of each individual (i.e., found in the same place on the same

chromosome), hence the term locus. A locus may correspond to

a structural gene (coding sequence), like for isoenzymes, but

this is not a requirement, and most of the time one will prefer

studying a non-coding locus because it is more likely neutral

(i.e., not submitted to selective forces) and thus more likely to

reflect purely demographic parameters (population size,

dispersal). More than one locus can be analysed, and we will

see that the study of several loci of the same nature is preferable

(the more the better/or at least seven). To be informative a locus

must be variable (i.e., polymorphic). This means that the

sequence of DNA must vary from one individual to another.

These different sequences of the same locus are called alleles.

The merit and differences among available molecular markers

have been more thoroughly reviewed elsewhere (e.g., Roderick,

1996; Sunnucks, 2000; Caterino et al., 2000) so we will only

briefly overview this topic. We have subdivided genetic

markers into three different categories (cytoplasmic markers,

dominant nuclear markers and codominant nuclear markers).

We thus explicitly refer to diploid eukaryotic organisms.

2.2. Cytoplasmic markers

Cytoplasmic markers correspond to loci present in

mitochondrial or chloroplastic genomes. These markers, and

in particular mitochondrial DNA, have been extensively used in

population studies (e.g., Roderick, 1996). Because it evolves

rapidly and lacks recombination, mtDNA has proved very
useful in phylogeographic studies (Avise et al., 1987; Avise,

2000). However, for population genetics-based studies, we

would not recommend using this kind of marker, for several

reasons. First, mtDNA is generally uniparentally inherited,

typically maternally, but sometimes paternal lineage occurs

(Xu, 2005). It is thus dependent on the population structure of

one sex in dioecious parasites or vectors (many nematodes,

arthropods, schistosomes), and the effective population size

(Box 1) of such markers will always be difficult to grasp

because it depends on several factors such as sex-specific

dispersal, sex ratio and reproductive strategy (Prugnolle and De

Meeûs, 2002; Prugnolle et al., 2003). Second, mtDNA might

not be neutral (Gerber et al., 2001) and thus may not only be

affected by demographic and geographical processes. We thus

chose not to treat this class of markers in the present paper.

2.3. Dominant nuclear markers

With dominant nuclear markers, heterozygous individuals

(hence in diploids) are seen as homozygous for one of the
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alleles present. This allele is called dominant while the other

(invisible in the heterozygous state) is called recessive. Here,

the phenotype (the perception we have of the genotype) does

not reflect the genotype. The most well-known dominant

markers are the randomly amplified polymorphic DNA

(RAPD). Small primer pairs randomly amplify portions of

target DNA if a sequence match is found. Thus, for diploid

species, homozygous individuals with no-matching sequence

are characterised by an absence of the amplified product. The

heterozygote and homozygote individuals with a matching

sequence display the same phenotype (presence of the

amplified product). Only phenotypic frequencies can be

estimated with this kind of marker. Allelic frequencies cannot

be assessed in diploids and thus the local distribution of genetic

information within and between individuals remains hidden.

Moreover, as previously mentioned, it is always desirable

studying several similar loci. However, as RAPD markers

concern a random portion of DNA, there is no way to know if

the different loci involved are equivalent in terms of neutrality

and mutation rate. For these reasons, dominant markers in

general and RAPDs in particular are far from ideal population

genetics tools.

2.4. Codominant nuclear markers

With codominant nuclear markers, all genotypes (homo-

zygous and heterozygous) are theoretically distinguishable.

Many visualisation techniques exist for such markers.

Isoenzymes, restriction fragment length polymorphisms

(RFLP), amplified fragment length polymorphisms (AFLP),

microsatellites, minisatellites, multilocus sequence typing

(MLST) and single-stranded conformational polymorphism

(SSCP) are among the best known. Here, we chose to focus on

two of these: isoenzymes and microsatellites because these are

generally the easiest and cheapest to implement. For other

techniques, readers may refer to existing reviews (e.g., Taylor

et al., 1999; Caterino et al., 2000; Sunnucks et al., 2000;

Bougnoux et al., 2004). Single-nucleotide-polymorphism

(SNP) markers are very useful in association studies. But as

these are mainly bi-allelic loci, with heterogeneous mutation

rates (there is a clear bias in favour of transitions over

transversions) (Vignal et al., 2002), such markers are not ideal

for population genetics studies.

Isoenzymes, also known as allozymes, are metabolic

enzymes, like the glucose-phosphate-isomerase of the Kreb’s

cycle, contained in the cell and coded by specific genes. To use

these markers, individuals, or a part of their body, are crushed in

a buffer or distilled water and the extract is introduced onto or

into a gel (e.g., starch, polyacrylamide, cellulose-acetate gels)

that is submitted to an electric current. Proteins are generally

negatively charged and will thus migrate to the anode, and more

rarely to the cathode when positively charged (hence the term

electrophoresis). Depending on the electric charge, different

enzymes will migrate at different speed. At the end of

migration, enzymes are revealed with a solution containing the

substrate (or an analogue) of the enzyme and a mix of

molecules that precipitates and stains the product of the
enzymatic reaction. If the locus under study displays sequence

variation that affects the charge of the enzyme but does not

abolish its function, then such variation will be visible on the

gel. For the same locus, different bands will be revealed

corresponding to different alleles (hence the term allozymes).

Homozygous individuals for different alleles will display

banding patterns that differ in migration. Depending on the

structure of the enzyme, heterozygous individuals will display

two, three or five bands for monomeric, dimeric or tetrameric

enzymes, respectively. More details on enzyme electrophoresis

can be found in Pasteur et al. (1987) and Ben Abderrazak et al.

(1993). Enzymatic loci are very easy to study and probably

represent the cheapest way to study population genetics.

However, as only about one-third of mutations in the DNA

sequences of the considered enzyme are visible with

electrophoresis (Shaw, 1970), these markers generally show

low polymorphism. Moreover, the technique requires working

with relatively large amount of live material and is thus not

appropriate for small and uncultivable (in the cloning sense)

organisms. Finally, because enzymatic function is required for

visualisation, the material must be fresh or properly conserved.

Samples must be kept frozen which is often difficult in many

countries and for many species of medical or agronomic

interest. These different reasons explain why isoenzymes are

rarely used in molecular epidemiology studies, with a few

(important) exceptions such as recent studies on some

organisms as cockroaches (Corley et al., 2001), spearwinged

flies (Niklasson et al., 2004), pathogenic fungi (Arnaviehle

et al., 2000; Badoc et al., 2002; De Meeûs et al., 2002b; Nébavi

et al., 2006), and kinetoplastid parasites and their vectors

(Barnabé et al., 2000; Borges et al., 2000; Hide et al., 2001;

Brenière et al., 2003; Njiokou et al., 2004).

Microsatellites are short tandemly repeated sequences of

DNA, generally of two, three or four base pairs (more rarely

five) (e.g., AC, CGT, GATA). The polymorphism of these

markers consists of variation in the number of repeats of the

sequence. To be visualised, a microsatellite locus requires

knowledge of the sequences that flank the locus, so that primers

can be designed to amplify this portion of DNA. Thus, after

DNA extraction and PCR amplification, with the integration of

labelling substance (e.g., fluorescein-labelled PCR), the

product is revealed by electrophoretic migration in a gel

and/or buffer. Variants are then differentiated because longer

products (with more repeats) migrate more slowly than shorter

ones. Homozygotes have one band or peak (if an automated

sequencer is used), while heterozygous individuals display two

bands or peaks. Microsatellite loci are generally considered to

be highly polymorphic, codominant, abundant throughout the

genome, and relatively easy to score (Lehmann et al., 1996).

Because these markers are DNA sequences, storing samplings

in alcohol prior to use is generally not a problem. In addition,

with recent improvements in amplification techniques, it is

possible to work out from extremely small amounts of organic

material. For instance, Razakandrainibe et al. (2005) genotyped

single Plasmodium oocysts for seven microsatellite loci. For

these reasons, microsatellite loci are very interesting for use in

molecular epidemiology.
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3. Basic concepts in population genetics

3.1. Estimating allelic frequencies from a sample of

genotyped individuals

Let us now assume that we are studying diploid individuals

sampled from a natural population and genotyped at several

codominant genetic markers. Let us take the example of one

sample of size N with one locus and two alleles labelled 1 and 2.

Let N11, N12 and N22 be the number of genotypes 1/1, 1/2 and 2/

2, respectively found in the sample. The allelic frequencies p1

and p2 of alleles 1 and 2 in the sample can therefore be

computed as

p1 ¼
2N11 þ N12

2N
¼ N11 þ ð1=2ÞN12

N
(1)

and

p2 ¼
2N22 þ N12

2N
¼ N22 þ ð1=2ÞN12

N
¼ 1� p1 (2)

Because we are using codominant markers, these frequencies

are estimates of those of the population from which the

individuals were sampled.

3.2. Hardy–Weinberg assumptions and equilibrium

Most discussions on the genetics of populations start with

the ‘‘Hardy–Weinberg model’’. Hardy (1908), a British

mathematician, and Weinberg (1908), a German physician,

independently produced this model the same year (1908), hence

the appellation ‘‘Hardy–Weinberg’’. This equilibrium model is

the theoretical basis for most (if not all) population genetics

analyses.

The assumptions of the model are the following:
� T
he population studied is of infinite size (infinite number of

individuals);
� T
here is no mutation;
� T
here is no migration (dispersal) (the population is isolated);
� T
here is no selection;
� R
eproduction is sexual and zygotes are produced by the

random association of gametes (panmixia).

For a locus with two alleles (1 and 2) with frequencies p1 and

p2 = 1 � p1 respectively, in such an ideal population, the

expected genotypic frequencies in zygotes are simply the

product of the frequencies of the different alleles. Thus, the

frequency of genotype 1/1 is p2
1, the frequency of genotype 1/2

is p1p2, the frequency of genotype 2/1 is p2p1 and the frequency

of genotype 2/2 is p2
2. This naturally leads to the classical p2

1,

2p1p2, p2
2. It is easily seen that the sum of these frequencies

equals 1 and that the frequency of each allele remains

unchanged in the zygotes (e.g., using Eqs. (1) and (2)). Because

the population is infinite, the random sampling of gametes and

zygotes that will form the next generation does not alter these

frequencies (no random genetic drift). Because there is no

selection, migration or mutation, these frequencies remain
constant, hence the term equilibrium. It is noteworthy that

panmixia will always produce a genotypic distribution of the

form p2
1, 2p1p2, p2

2 at each generation even if the population

does not fulfil all the other assumptions of Hardy–Weinberg.

3.3. Relaxing Hardy–Weinberg assumptions

3.3.1. Finite-sized populations

The best illustrations being often the most caricatured ones,

let us assume a population of size N = 2 with two heterozygous

individuals 1/2. The allelic frequencies are thus p1 = 1/2 and

p2 = 1/2. With a random union of gametes p2
1 = (1/4) 1/1,

2p1p2 = (1/2) 1/2 and p2
2 = (1/4) 2/2 are produced in the zygotes

(here, the number of zygotes is considered to be very large). If

the population is to stay at a constant size, regulation must

occur such that two adults are obtained from these zygotes. If

the surviving zygotes are chosen at random, we have a 1/8

chance to get one allele fixed (two 1/1 or two 2/2), 1/4 chance to

see p increasing to 3/4 (one 1/1 and one 1/2 or one 1/2 and one

1/1), 1/4 chance to see it decrease to 1/4 (one 1/2 and one 2/2 or

one 2/2 and one 1/2) and only 3/8 chance that p remains

unchanged (two 1/2 or one 1/1 and one 2/2 or one 2/2 and one 1/

1). It is easily seen that allelic frequencies will change in most

situations (5/8). This phenomenon is called genetic drift. It is

also obvious that this process leads to a loss of diversity in the

population and, providing that no other force is acting on the

population (no mutation, no migration), all finite-sized

populations should tend to fix a single allele at each locus.

The smaller the population, the faster genetic drift acts.

3.3.2. Mutation

This occurs when a mistake is made during DNA

duplication. Different kinds of mutations can affect DNA

sequences and different mutation models exist as well. The

mutation is called recurrent when it constantly changes one

allele in the same way (i.e., leads to the same allele). This is for

instance the case for many deleterious mutations like the

albinism in human populations, which occurs with a rate of

about 2.5 � 10�5 (e.g., Hedrick, 2003). In the K alleles model

or KAM, mutation randomly transforms one existing allele into

one of K possible alternatives. For instance, if the locus under

consideration is one base pair long, then there are theoretically

four possible allelic states (A, T, G or C). Because the number

of distinct alleles is limited, two individuals can share the same

allele even though they do not share a recent common ancestor.

This phenomenon is called homoplasy. In the infinite allele

model or IAM, each mutation transforms an existing allele into

a new one that was not previously present in the population.

This special case is very useful in theoretical population

genetics as it allows many analytical simplifications without

loosing too much realism, particularly compared to the KAM

model (when K is big). In the IAM model, homoplasy is not

possible and all identical alleles are identical by descent

(inherited from a common ancestor). Finally, the stepwise

mutation model (SMM) (Kimura and Ohta, 1978) was specially

designed for microsatellite-like loci. Here, mutation corre-

sponds to an addition or deletion of a single repeat of the
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elementary motif. If this occurs then homoplasy is likely

common, because we characterise alleles based only on their

size. However, the difference in repeat number between two

alleles can be used to measure their relatedness. Some other

more complex mutation models exist (e.g., combining SMM

and KAM). Regardless of the mutation model, mutation will

change the allele frequencies. However, most mutation rates,

except for some microsatellite loci, are very low and mutation

alone is a weak micro-evolutionary force, although it should be

noted that when associated to drift and selection it represents

the key of evolution.

3.3.3. Migration

Natural populations are not totally isolated from each other

and tend to exchange propagules between them. These

propagules can be larvae, adults, spores or gametes, seeds or

pollen, they can be haploid or diploid. The resulting gene flow

tends to homogenise the allelic frequencies at all loci across

connected populations. Migration can be strong and is a major

evolutionary force. Its interaction with genetic drift and

mutation can lead to neutral polymorphic equilibrium, without

the need of selection.

3.3.4. Selection

Selection is, of course, a major evolutionary force. It can

strongly affect allelic and genotypic frequencies. However,

selection is likely to affect only those loci concerned by this

force (or those tightly linked to such loci). Directional selection

will increase or decrease allelic frequencies in a population and

can increase (or decrease) the genetic differentiation between

populations at the selected locus. If gametes fuse randomly,

then the typical Hardy–Weinberg genotypic distribution ( p2
1,

2p1p2, p2
2) should be observed at each generation, with varying

values of p1 and p2. Overdominance, increasing the fitness of

heterozygous individuals, will create an excess of heterozygous

adults compared to Hardy–Weinberg expectations. This is what

is observed in human populations at the drepanocytose locus (a

very serious genetic disease for homozygous humans) in highly

endemic zones of the malaria agent Plasmodium falciparum

(e.g., Ridley, 1996), where heterozygous humans are more

resistant to malaria than mutation free homozygotes. Under-

dominance is the reverse phenomenon and is not expected to be

frequently met in nature as it is highly unstable (the rarest allele

tends to disappear). The rhesus system in humans, where a

heterozygous (Rh+/Rh�) foetus (if not the first borne) in a

homozygous (Rh�/Rh�) mother is endangered by the maternal

immune system (e.g., Hartl and Clark, 1989), can be taken as an

approximative example of underdominance, where a hetero-

zygote deficit is expected. Selection can also be frequency-

dependent. In this case, the fitness of a genotype depends on its

frequency in the population, the rarest has the highest fitness.

This selection is typically met in host–pathogen interactions

when it acts under a gene for gene (with selective costs) or a

matching allele model (e.g., Agrawal and Lively, 2002). This

kind of selection will generally tend to homogenise the allelic

frequencies across populations, although its interaction with

migration can lead to more complex patterns (Gandon et al.,
1996; Gandon, 2002; Morgan et al., 2005). Heterosis (or hybrid

vigor) is a global phenomenon that should affect the whole

genome. It results from a genomically widespread over-

dominance or because the presence of many deleterious

recessive alleles produces a significant inbreeding depression

and thus favours the most heterozygous individuals (e.g.,

Prugnolle et al., 2004).

3.3.5. Non-random union of gametes

Several phenomena, with different consequences, can affect

how gametes meet. With selfing, one hermaphroditic individual

can fertilise its own ovules with its own spermatozoids. This

will affect the genotypic distribution at all loci and will

decrease heterozygosity compared to that expected under

panmixia. It can be easily demonstrated that, with a selfing rate

of s (corresponding to the proportion of zygotes produced by

selfing) the expected heterozygosity for two alleles of

frequencies p1 and p2 becomes, at equilibrium (e.g., Hartl

and Clark, 1989):

He ¼ 2 p1 p2

�
1� s

2� s

�
(3)

From Eq. (3), it is obvious that when s = 0 the expectation

returns to the Hardy–Weinberg situation, and when s = 1, as in

Taenia solium (e.g., Kunz, 2002; De Meeûs et al., 2003), no

heterozygote is expected to be found in a population at

equilibrium. It should be noted that hermaphroditic organisms

are not necessarily in deviation from panmixia. For instance,

using microsatellite markers, Hurtrez-Boussès et al. (2004)

found that the monoecious liver fluke Fasciola hepatica was

panmictic. Sib mating will have the same consequence as

selfing (all loci loose heterozygosity), albeit the decrease in

heterozygosity is slower (e.g., Hartl and Clark, 1989). Sib

mating is met several times in nature as, for example, in the

parasitoid wasp Nasonia vitripenis (Shuker et al., 2004) or, in

the special case of some royal or imperial human families (e.g.,

Pharaoes, European Kings). Likewise, homogamic loci, which

lead individuals (or gametes) to mix when carrying the same

allele, will experience a decrease in heterozygosity. Traits such

as size at maturity or pathogen resistance typically have a

genetic basis and assortative pairing on such characters are

well documented (e.g., Thomas et al., 1995). Symmetrically,

heterogamic loci that favour mating between individuals car-

rying different alleles, like MHC loci (e.g., Roberts et al.,

2005), will undergo a dramatic increase in heterozygosity. In

this case, it is worth noting that frequency-dependent selection

cannot be disentangled from heterogamy because rare indivi-

duals are compatible with most other individuals in the popu-

lation. Homogamy and heterogamy only affect the genotypic

composition of the concerned loci along with those closely

linked to them. It is worth noting that, in a strictly panmictic

population of size N, 1/N individuals are expected to be

produced by selfing (e.g., Rousset, 1996). This means that

dioecious organisms can never be truly panmictic as those

genes contained in females can only encounter those contained

in males. This will have insignificant consequences in popula-
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tions of reasonable size, but will produce a significant excess of

heterozygotes in small dioecious populations or in self-incom-

patible hermaphrodites (Balloux, 2004). A heterozygote

excess is thus likely to occur in many parasites such as

schistosomes or most monogenean flatworms (mostly self-

incompatible) and has indeed been reported for Schistosoma

mansoni (Prugnolle et al., 2002). Finally, asexual reproduc-

tion, or clonality, in conjunction with drift and mutation will

result in an increase of heterozygosity at all loci (see Balloux

et al., 2003; De Meeûs and Balloux, 2005).

3.4. The notion of a heterozygote deficit

As seen above, most deviations from Hardy–Weinberg

assumptions will alter the genotypic composition observed in

the population, especially when there are deviations from

random mating. Wright (1965) designed a standardised index

that measures this deviation, and is theoretically comparable

across loci and populations. This index is the local fixation index,

F IS, which corresponds to the excess homozygosity of

individuals in a sub-population (hence the subscripts I and S)

resulting from the non-random union of gametes in that sub-

population. If gametes do not fuse randomly, then F IS

corresponds to the proportion of heterozygotes that are lost or

gained and equitably redistributed as homozygotes. If, for a given

locus with two alleles 1 and 2 of respective frequencies p1 and p2,

Do, Ho and Ro are the genotypic frequencies 1/1, 1/2 and 2/2,

respectively observed in the sub-population and De, He and Re are

their expected frequencies under panmixia, then we can write:

Do ¼ p2
1 þ p1 p2FIS ¼ De þ

He

2
FIS;

Ho ¼ 2 p1 p2 � 2 p1 p2FIS ¼ 2 p1 p2ð1� FISÞ ¼ Heð1� FISÞ;

Ro ¼ p2
2 þ p1 p2FIS ¼ Re þ

He

2
FIS (4)

which leads to:

FIS ¼ 1� Ho

He

¼ He � Ho

He

(5)

When gametes fuse randomly (panmixia), F IS = 0 (He = Ho).

Negative values correspond to an excess of heterozygotes and

positive values to a deficit. Note that F IS = �1 is only possible

with two alleles of equal frequencies ( p1 = p2) and if the

population is only composed of one kind of heterozygote

(e.g., fixed for 1/2), whereas F IS = 1 means there is only

homozygous individuals in the sub-population, whatever the

number of alleles and their frequency.

Using Eqs. (3) and (4), we can see that:

FIS ¼
s

2� s
and thus that the selfing rate can be inferred from the estimation

of F IS as

s ¼ 2FIS

1þ FIS

(6)

if one assume that the population has reached equilibrium and

that F IS only comes from self-reproduction. For instance, this
was successfully used to estimate selfing rate (between 0.8

and 1) in the fresh water snail Galba truncatula, the inter-

mediate host of the liver fluke F. hepatica (Meunier et al.,

2004a).

For more than two alleles, more than one locus and more

than one sub-population there are as many measures of F IS. One

may be more interested in mean values of F IS if the purpose is to

infer the reproductive strategy of the studied species. Mean

‘‘heterozygosities’’ should then be used to compute F IS:

FIS ¼
Hs � Ho

Hs

where Hs is the mean expected heterozygosity overall

alleles, loci and sub-populations, or more appropriately

speaking the gene diversity observed in the different sub-

populations, and Ho is the mean heterozygosity observed in

these sub-populations. For the sake of generality and con-

formity with modern notation, we will now express this

fixation index (and all that follow) in terms of probabilities

of identity. Let us define QI as the probability that the two

alleles (at one locus) of an individual from one sub-popula-

tion are identical and QS as the probability that two alleles

drawn at random from two distinct individuals from the same

sub-population are identical. Because QI ¼ 1� Ho and

QS = 1 � Hs we obtain:

FIS ¼
1� QS � 1þ QI

1� QS

¼ QI � QS

1� QS

(7)

which corresponds to the general definition for F IS (see Rous-

set, 2004).

4. Population structure, Wahlund effect and F-statistics

Living organisms generally are not homogeneously dis-

tributed across their vital domain. Most natural populations are

subdivided into sub-populations of limited size. The structure

of a population has much influence on the distribution of

genetic information. To explore the consequences of population

structure, Wright (1951) imagined a particular model he called

the infinite island model. In this model, the population is

composed of an infinity of sub-populations (or demes) of equal

size N. At each non-overlapping generation, a deme is built

with (1 � m)N philopatric individuals coming from the same

sub-population and mN migrants coming from all existing sub-

populations. Because of their limited size, these sub-popula-

tions will tend to drift. Because drift is a random process, it

should lead to genetic divergence between sub-populations.

Migration will have the reverse effect, and will tend to

homogenise allelic frequencies across sub-populations. Let us

study the polymorphism at one locus with two alleles. If p̄ and

(1� p̄) are the mean allelic frequencies of the first and second

alleles over all sub-populations, then the mean expected

homozygosity across sub-populations will be p2 þ ð1� pÞ2, if

all sub-populations are locally panmictic. The global expected

homozygosity will be p̄2 þ ð1� pÞ2. Thus, if we ignore the

structure of the population, using Eq. (7) we obtain a F IS-like
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fixation index:

F0IS ¼
p2 þ ð1� pÞ2 � p̄2 � ð1� pÞ2

1� p̄2 � ð1� pÞ2

which can be written in the more compact form:

F0IS ¼
p2 � p̄2

p̄ð1� p̄Þ (8)

The numerator is a variance-like term and is thus always

positive (or null when allelic frequencies are identical across

sub-populations). Thus, if allelic frequencies are not identical

then a heterozygote deficit is expected for the whole population.

This is a Wahlund effect (Wahlund, 1928). This effect corre-

sponds to the inbreeding (homozygosity) due to the subdivision

of the population into separated sub-populations.

In this kind of hierarchical framework (individuals within

sub-populations, sub-populations within total population, total

population), three F-statistics can thus be defined (Wright,

1965). F IS measures the inbreeding of individuals that is due to

the local non-random union of gametes in each sub-population.

FST reflects the inbreeding resulting from the subdivision of the

population into sub-populations of limited size that do not

freely exchange migrants; it is thus a measure of the Wahlund

effect along with a measure of genetic differentiation between

sub-populations. F IT is the inbreeding of individuals in the total

population resulting from both the previous phenomena. A

general expression for these indices can also be expressed as

functions of probabilities of identity of two alleles within

individuals QI, between two individuals within sub-populations

QS and, between sub-populations QT (e.g., Rousset, 2004):

FIS ¼
QI � QS

1� QS

; FST ¼
QS � QT

1� QT

; FIT ¼
QI � QT

1� QT

(9)

Note that from Eq. (8) under an infinite island model we obtain

the original formulation of Wright’s (1965) FST:

FST ¼
s2ð pÞ

s2
maxð pÞ

(10)

where s2
maxð pÞ is the maximum possible variance of allelic

frequencies across sub-populations, i.e., when each sub-popu-

lation is fixed for different alleles (e.g., for two alleles p̄
populations and (1� p̄) are fixed for alleles 1 and 2, respec-

tively).

Other models of structured populations that help study the

effects of different ecological constraints also exist. Such

models involve geographical distances in a continuous

population framework (neighbourhood models) (e.g., Rousset,

2000; Leblois et al., 2004) or in discrete patterns (stepping

stone models) (e.g., Slatkin, 1985).

From Eq. (9), we can see that FST varies between FST = 0,

when genetic identity between individuals is independent from

the sub-population where they are (no differentiation) and

FST = 1, when all individuals of the same sub-population are

identical (QS = 1) but differ in different sub-populations
(QT < 1), meaning a complete independence among sub-

populations (e.g., expected if sub-populations are completely

isolated for a long period of time). F IT varies between

F IT = �1, when all individuals are heterozygous for the same

two alleles and F IT = 1 when all individuals are homozygous

with at least two alleles. When the probability of sampling

two identical genes over all the meta-population is indepen-

dent of where an individual comes from, then QI = QS = QT

and a global conformity to Hardy–Weinberg expectations

is observed with F IS = FST = F IT = 0. From Eq. (9) one can

see that the three F-statistics are connected by the famous

(at least for population geneticists) relationship: (1 � F IT) =

(1 � F IS)(1 � FST).

Similar to the way that F IS can be translated into

ecologically relevant characteristics, FST can be linked to

the structure of the meta-population in terms of number of

migrants. In an infinite island model of locally panmictic sub-

populations, the probability of identity between two demes is

null (in fact QT � 1/1 because of the infinite number of demes)

and thus FST is equal to the probability of identity between

individuals within sub-populations (QS). At any generation t,

this probability of identity is QS(t), which is the proportion of

identical genes in a sub-population. At t + 1 this proportion will

be increased by the proportion of different genes (1 � QS(t))

that were randomly sampled twice. In a sub-population of size

N this probability is (1/2N)2. As sampling must be repeated 2N

times for building the N diploid individuals of the next

generation, the general increase in identity is 1/2N. Thus, at

t + 1, the proportion of identical genes in any sub-population

will be QS(t)+(1 � QS(t))/2N, providing none of these genes

came from another sub-population, which is true with

probability (1 � m)2. Knowing all this, and hoping we have

not yet lost all readers, we can write:

QSðtþ1Þ ¼ ð1� mÞ2
�

QSðtÞ þ ð1� QSðtÞÞ
1

2N

�
(11)

At equilibrium QS(t+1) = QS(t) = Q̂S=((1 � m)2/2N)/(1�(1 �
m)2+((1 � m)2/2N)), which gives:

Q̂S ¼
ð1� mÞ2

2Nmð2þ mÞ þ 1� 2mþ m2

Assuming small values of m and replacing QS by FST we

reach the classical formula:

FST �
1

4Nmþ 1
(12)

From this, the number of migrants can theoretically be

estimated as Nm = (1 � FST)/4FST. If mutation must be taken

into account, with an IAM and a mutation rate u, Eq. (12)

becomes:

FST �
1

4Nðmþ uÞ þ 1
(13)

From here it is easy to see that with high mutation rates FST will

never equal 1, even when m = 0. It is worth noting that Eqs. (12)

and (13) assume equilibrium between migration (and mutation)
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and drift in an infinite island model. Relaxing these assump-

tions can strongly limit our ability to make inferences regarding

the effective number of migrants (e.g., Whitlock and McCauley,

1998). For this reason, other models, alternatives to the infinite

island model, of subdivided populations also exist. When the

number of sub-populations and alleles become small then

equilibrium values for F-statistics are altered (e.g., Rousset,

1996). The migration model can also be different and, for

instance, depends on the geographical distances that separate

individuals (neighbourhood models) or sub-populations (step-

ping stone models). In this case, it is more appropriate to study

the correlation between genetic differentiation of pairs of

individuals or sub-populations and their geographical distances

(Rousset, 1997, 2000).

5. Unbiased estimators of F-statistics

The F-statistics we have just seen correspond to the

parametric definitions used if all individuals of all populations

are sampled. If not all individuals are sampled, we can only

estimate the true parameter value. This estimate must be

unbiased (the average of the estimate must be equal to the true

parameter value) and (as far as possible) of low variance. For

instance, it is for this reason that we estimate the variance of a

statistic x with:

s2ðxÞ ¼ 1

n� 1

Xn

i¼1

ðxi � x̄Þ2 (14)

instead of with the parametric definition:

s2ðxÞ ¼ 1

n

Xn

i¼1

ðxi � x̄Þ2 (15)

As illustrated in Eq. (10), Wright’s F-statistics can be assimi-

lated to variances ratios. Unbiased estimators should be able to

take into account redundancy of information used while esti-

mating these variance ratios. Weir and Cockerham’s (1984) f , u

and F are unbiased estimators of F IS, FST and F IT, respectively

(see also Balloux and Goudet, 2002). These values are obtained

from a nested analysis of variance of gene frequencies. If s2
a , s2

b

and s2
w are respectively, the among sub-populations, the among

individuals within sub-populations and the among alleles

within individuals components of variance of the allele fre-

quencies, then we have:

f ¼ s2
b

s2
b þ s2

w

; u ¼ s2
a

s2
a þ s2

b þ s2
w

;

F ¼ s2
a þ s2

b

s2
a þ s2

b þ s2
w

(16)

Full expression of these variance components are quite cum-

bersome and can easily be found in the literature. It is worth

noting that if F and f range from �1 to +1 as F IT and F IS do, u

can vary from �1 to +1. Negative values, which are impossible

for the parameter FST, are met when the allelic frequencies of

the samples differ less than expected by chance (through

sampling variance).
6. Other measures and estimators of population

differentiation

As seen from Eq. (13), the maximum value of FST is lower

than 1 for high mutation rates. Mutation can also follow a strict

SMM. In these cases, FST may poorly reflect the amount of gene

flow. Several other measures have thus been proposed. RST was

proposed by Slatkin (1995) to measure population differentiation

with loci following a strict SMM. The same principle can be

applied to local heterozygote deficits (Rousset, 1996) and

unbiased estimators that take into account the variance in allele

size have been designed (e.g., Rousset, 1996). If the mutation

model does not follow a strict SMM, it is wiser to disregard such

measures and use Weir and Cockerham’s (1984) estimators

(Balloux et al., 2000; Balloux and Goudet, 2002). Hedrick (1999,

2005) provided a tool to estimate how far a measured FST can be

from the maximum possible value that would be observed with

no migration when the number of alleles at the loci is big. This

quantity can be estimated as a function of QS = (1 � Hs), which is

in fact the maximum possible differentiation if the number of

sub-populations is large.

Population differentiation is often measured through genetic

distances between population pairs. Several measures exist.

FST can of course be estimated between a pair of populations,

but will suffer from some caveats (Rousset, 1997; Balloux and

Goudet, 2002) and other estimators may be preferred

depending on the aim of the study. For isolation by distance

studies, u/(1 � u) will be of use (Rousset, 1997), while for

others (e.g., tree construction) Cavalli-Sforza and Edwards

chord distance (Cavalli-Sforza and Edwards, 1967) may be

preferable (Takezaki and Nei, 1996; Kalinowski, 2002). This

distance is obtained by the following formula:

Dc ¼
2

rp

Xr

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
1�

Xm j

i¼1

ffiffiffiffiffiffiffiffiffiffi
xi jyi j
p

�vuut (17)

where r is the number of loci, j the locus name (from 1 to r), i

the allele name (from 1 to mj), mj the number of alleles at locus

j, xij and yij are the frequencies of allele i at locus j for sub-

populations x and y, respectively.

When the distance has to be computed between individuals,

the shared allelic distance (Bowcock et al., 1994) can be more

appropriate (see Prugnolle et al., 2005c). If Nsa is equal to the

number of shared alleles between two individuals over all the L

loci, then the shared allelic distance is 1 � Nsa/2L.

7. Linkage disequilibrium

When looking at more than one locus (and, as previously

mentioned, this is desirable!), a problem may arise because

alleles at different loci can be correlated. Let us assume that

there are two loci A and B with two alleles each and that the

respective genotypic frequencies are DA, HA and RA for A1A1,

A1A2 and A2A2 at locus A and DB, HB and RB for B1B1, B1B2 and

B2B2 at locus B. If the two loci are statistically independent

(i.e., unlinked), we expect the occurrence of genotypes to equal

the product of the corresponding single locus genotypic
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Box 2. Imagine a coin that is thrown twice. Four differ-

ent events can occur: two heads, one heads and one

tails, one tails and one heads and two tails. Each of these

events has an equal probability 1/4 to happen. When we

flip the coin, two heads are obtained. We would now like

to test for a possible bias in the result (e.g., an unba-

lanced coin). Three different tests, with different null

(H0) and alternative (H1) hypotheses can be performed:

� Unilateral test 1: H0; the coin is balanced, H1; the coin

gives more heads than expected by chance.

� Unilateral test 2: H0; the coin is balanced, H1; the coin

gives fewer heads than expected by chance.

� Bilateral test: H0; the coin is balanced, H1; the coin is

not balanced.

For the first test, the probability that we are looking for is

the sum of the probabilities of events with as many or

more heads than the observed one (here 1/4), divided by

the sum of probabilities of all possible events (here 1).

The P-value is thus 0.25. Similarly, for the second test

the P-value is 1/4 + 1/4 + 1/4 + 1/4 = 1. Finally, for the

bilateral test the P-value is the sum of probabilities of

all events that are as rare or rarer than the observed, that

is the probability of getting two heads plus the prob-

ability of getting two tails, thus the P-value = 0.5. Note

that the bilateral P-value equals twice the minimum

unilateral P-value.
frequencies. For instance, if there is linkage equilibrium the

frequency of the genotype A1A1_B1B1 should be equal to DADB,

and so on for the other combinations. If this is not the case, the

two loci are in linkage disequilibrium. Of course, physical

linkage between loci can be the cause of an observed linkage,

but selfing and clonality are also expected to generate this

pattern. Population structure, especially when sub-populations

are small and have very low dispersal rates, can also generate

linkage disequilibrium among loci. Selection can potentially

generate linkage between some loci as well. Because we only

have access to the diploid phase most of the time, composite

linkage measures must be applied (A1A2_B1B2 cannot be

distinguished from A2A1_B2B1) (Weir, 1979, 1996). Because

some reproductive systems, in particular clonality, lead to

global linkage, some authors have developed multilocus

measures of linkage disequilibrium (e.g., Agapow and Burt,

2001). However, the behaviour of such measures in different

conditions of population structure has been poorly investigated

so far, even if it was suggested that such studies are worth

considering (e.g., De Meeûs and Balloux, 2004). Linkage

equilibrium is often important to assume for statistical tests

based on multilocus averages. If the different loci are strongly

linked, the multilocus information is redundant and may lead to

decision errors (see below).

8. Statistical tests

8.1. Basic notions

Because we can never (or extremely rarely) work on all

individuals from all populations at all generation times,

sampling has to be undertaken. We therefore expect a sampling

variance to be introduced to our measure. This means that the

value calculated from a sample of individuals (e.g., F IS, FST

estimators) has little chance of equalling the true (parametric)

value of the natural population it comes from. This is where the

statistical analysis comes into play, by offering a criterion (the

probability of the test or P-value) for deciding if the deviation

from an expected value can be explained by the sampling

variance alone. An expected value must therefore be defined.

This expected value is the value expected under a null model or

null hypothesis (H0). For instance, if one wants to know if an

observed F IS is in agreement with the value expected under

random mating, then the null hypothesis is ‘‘the observed F IS is

not significantly different from that expected under panmixia,

i.e., 0’’. The P-value of the test will be the probability with

which the sampling variance can explain a deviation as big or

bigger than the one observed and is also called the type I error.

Type I error, also noted a, corresponds to the probability of

falsely rejecting H0 when it is true. Type II error (or b) is the

probability of accepting H0 when it is false. The limit for

significance is classically and arbitrarily set at 0.05, but we will

see that sometimes a lower bound is needed. If the P-value is

lower or equal to this threshold, the data are considered to

deviate significantly from the null hypothesis. Depending of the

nature of the alternative hypothesis H1 (Box 2), two different

families of tests can be distinguished: bilateral and unilateral
tests. From Box 2, one can see that the alternative hypothesis

has important consequences. If one chooses to perform a

unilateral test, it has to be chosen a priori (of course), but also

has to be chosen wisely. For instance, the significance of F IS is

tested unilaterally most of the time (alternative hypothesis, H1;

F IS > 0) because heterozygote deficits are what is typically

expected. However, for clonal organisms where a heterozygote

excess is expected (e.g., Balloux et al., 2003), another H1 is

relevant. It is worth noting that the example in Box 2 also

illustrates (with an extreme case) the lack of power to detect a

signal with small sample sizes (here the most extreme possible

P-value is 0.25). This illustrates what is called the type II error.

Obviously, type II error is very high in the example from Box 2.

8.2. Resampling and randomisation tests

In the example described in Box 2, an exact probability

could be computed because the different possible events could

easily be enumerated one after the other. This will rarely be

possible for the analysis of genetic data from natural

populations. Nevertheless, the use of computerised calculations

enables us to test our data and also obtain excellent

approximations of exact probabilities. Different procedures

with different properties exist.

8.2.1. Bootstrap and Jackknife

The aim of both methods is to generate a distribution of

values based on resampling the data and then estimate

confidence intervals. The principle of the bootstrap is to
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Fig. 1. Schematic representation of the bootstrap distribution of values for a

given statistic and how a 95% confidence interval is obtained.

Box 3. Let us assume that we have a data set of eight

samples with five loci. Over all loci FST = 0.004, and for

locus 1 FST1 = 0.002. The jackknife over loci (five values)

gave a standard error of StdErrLoci(FST) = 0.003. The

jackknife over populations (eight values) gave a stan-

dard error StdErrPop(FST1) = 0.001 for locus 1. Then,

assuming the jackknife generates normal distributions

we can use the t distribution with a = 0.05 (Table 1

available at http://gemi.mpl.ird.fr/cepm/SiteWebESS/

GB/deMeeus/SuplMat.html) to compute the 95% con-

fidence interval for FST and FST1 as:

CIðF STÞ ¼ F ST � t0:05;gL StdErrLociðF STÞ;

CIðF ST1Þ ¼ F ST1 � t0:05;gP StdErrLociðF ST1Þ

where gL = 5 � 1 = 4 and gP = 8 � 1 = 7 are the degrees

of freedom for the jackknife procedures over loci and

populations, respectively. From Table 1 (which gives

values for intermediate degrees of freedom without

the need to interpolate like in classic textbooks) we

obtain t0.05,gL = 2.776 and t0.05,gP = 2.365. Thus, CI(FST) =

0.004 � 0.008 and CI(FST1) = 0.002 � 0.002.
resample with replacement within the data in order to obtain a

new data set. Repeating the operation a great number of times

will provide a bootstrap distribution of the measured statistic

(say FST) from which a confidence interval can be extracted (as

shown in Fig. 1). In population genetics studies, we generally

bootstrap over loci (as in Fstat, Goudet, 1995, freely down-

loadable at http://www.unil.ch/izea/softwares/fstat.html).

There must be a certain number of loci for the confidence

interval to reflect a biological reality (e.g., Raymond and

Rousset, 1995a). This is why Fstat will compute such

confidence intervals only when the number of loci is greater

than four. The jackknife principle is to extract one item from the

data (sub-sample, locus) and compute the statistic of interest

with the remaining items. This provides as many statistic

estimates as there are items (number of sub-samples or loci).

These estimates can then be used to compute the standard error

of the statistic. The standard error of a statistic x is simply:

sx̄ ¼
ffiffiffiffiffiffiffiffiffiffi
s2ðxÞ

n

r
(18)

where n is the number of measures (e.g., of loci) and s2(x) is the

estimated variance of x as in Eq. (14). From the standard error,

the estimation of the confidence intervals is straightforward

(Box 3). Fstat will not jackknife a data set when the number of

samples or loci is not greater than four.

8.2.2. Randomisation tests

Two different kinds of randomisations can be described: the

permutations and the Markov chain methods both are based on

the Monte Carlo principle (see Metropolis, 1987 for an

explanation of the name) of resampling the data. The

permutation procedure is what is implemented in Fstat (Goudet,

1995). To carry out this procedure, the null hypothesis is

simulated a great number of times (say 10,000) within the data

set. For instance, alleles are randomly exchanged among

individuals within each sub-samples to test for panmixia. F IS is

computed at each permutation and the proportion of values as
big or bigger than the one observed (H1 is F IS > 0) gives the P-

value of the test. In the same way, to test for population

subdivision (H0: individuals are randomly distributed among

sub-samples), individuals are randomly assigned to the

different sub-samples a great number of times and a statistic

reflecting the variation in allelic frequencies is computed. The

proportion of times a value as big or bigger than the observed

one is obtained provides the P-value of the test. With the

Markov chain (used in Genepop, Raymond and Rousset, 1995b,

freely downloadable at http://wbiomed.curtin.edu.au/genepop),

the randomisation procedure is different. The principle is to

define a random walk between different possible contingency

tables with identical marginal sums. The probability of

occurrence of each table is computed and compared to that

of the observed contingency table. The probability of the test is

obtained by summing the number of times a probability as

small or smaller than the observed one is obtained divided by

the total number of steps. A more detailed description can be

found in Raymond and Rousset (1995a). The P-values obtained

are excellent approximations of exact probabilities, providing

that the number of randomisations is large enough (say 10,000

for permutations and 1,000,000 for the Markov chain), which

should not be a problem with the latest computers.

8.3. The problem of repeated tests

It is sometimes desirable to take into account multiple P-

values, either because it is not possible to implement a global

test or because one is interested in which of the available tests

are significant. This can occur, for example, while exploring

published results where raw data are not accessible. It is also the

case for systematic testing between pairs of items like

differentiation between pairs of samples or linkage disequili-

brium between pairs of loci. There are two ways to treat this.

http://www.unil.ch/izea/softwares/fstat.html
http://wbiomed.curtin.edu.au/genepop
http://gemi.mpl.ird.fr/cepm/SiteWebESS/GB/deMeeus/SuplMat.html
http://gemi.mpl.ird.fr/cepm/SiteWebESS/GB/deMeeus/SuplMat.html
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Box 4. Let us assume we have sampled N individuals in

two locations (Samples 1 and 2 of size N1 and N2,

respectively). These individuals where genotyped at

one locus with two alleles of frequencies p1 and q1 in

Sample 1 and p2 and q2 in Sample 2, respectively. This

gives the quantities given in the following table:
Combining all the tests provides one with a global testing for

decision making and can be done relatively easily using

Fisher’s procedure (Fisher, 1970). If there are n P-values to be

combined, then the quantity:

x2
obs ¼ �2

Xi¼n

i¼1

ln ðPiÞ (19)

is a x2 variable with 2n degrees of freedom (to be compared to

the corresponding expected x2 distribution). Applying this

method requires the independence and the knowledge (not

always given in publications) of all Pi. The binomial test, as

applied in Prugnolle et al. (2002), is another solution for

combining independent tests. If the null hypothesis is true,

then a proportion of no more than 5% of significant tests is

expected by chance at the 5% level of significance (by defini-

tion). We thus just need to adjust the observed proportion of

significant tests to the expected one under the null hypothesis

with an exact binomial test. In any case, it is always preferable

to use a real global test instead of the Fisher procedure or the

binomial test because such procedures cannot take into account

the real weight of each individual test. Weights depend on

sample sizes and the degree of polymorphism in each data set.

Determining what tests are significant is possible with

Holm’s (1979) methods called the Bonferroni procedure. In the

case of multiple tests, the chance of finding a significant P-

value (say P � 0.05) by chance alone is increased. The

rationale behind the Bonferroni procedure is that if 100 tests are

performed in a population supporting the null hypothesis (e.g.,

a panmictic population) then approximately five tests are

expected to be significant by chance at the 5% level (by

definition). The Bonferroni correction is a conservative but

efficient way to avoid this caveat. It simply consists in

multiplying the observed P-values by the total number of tests,

or dividing the level of significance (e.g., 0.05) by the number

of tests (see Holm, 1979 or Rice, 1989 for more details). It may

be too conservative and be used with caution (e.g., see

Nakagawa, 2004 and Section 8.6).

8.4. Testing panmixia

Testing panmixia means testing for a deviation from random

mating. This can be done using the Haldane (1954) exact test

and its generalisation for more than two alleles (Guo and

Thompson, 1992) as implemented in Genepop (Raymond and

Rousset, 1995a,b). However, there are several problems

associated with this method because it tests the exact

distribution of all genotypic classes in relation to Hardy–

Weinberg expectations separately for each locus in each sub-

sample. First, for loci with more than two alleles, the test can be

significant because one genotypic class is in excess at the

expense of another class, while all other classes are in

agreement with Hardy–Weinberg expectations. This result may

be difficult to interpret biologically. Second, a true global test,

overall loci and sub-samples, is not available to date. We thus

must deal with multiple P-values, which, in addition to the first

problem, can be particularly disconcerting. The alternative is to
consider F IS, the value of which can be estimated and tested

over all loci and sub-samples and which is easy to translate into

biologically sound features (e.g., reproductive strategy). Two

alternatives exist. In Genepop, the statistic used for testing is

related to the Robertson and Hill (1984) estimator of F IS. This

estimator is biased but has a lower variance (a desirable

statistical property for the power of a test), than the alternative

Weir and Cockerham’s estimator, which is the statistic used in

Fstat (see Rousset and Raymond, 1995). To the experience of

one of us (TdM) the difference between the two tests is subtle.

In all cases, except when an exact Haldane test is possible,

panmixia is simulated by randomising allele association within

each sub-sample.

It should be noted that all of these procedures are indirect

tests of panmixia. It is however sometimes possible to test it

more directly when there is access to information about

copulating adults. In such cases, it is possible to test if adults are

pangamic, i.e., mate independently of their genotype. If male

and female genotypes of each pair are available, one can

compute the relatedness between males and females using, for

example, the software KinshipV.1.2. (module relatedness)

developed by Goodnight (http://gsoft.smu.edu/GSoft.html)

(see also Queller and Goodnight, 1989). Then a Mantel

correlation test (see Section 8.7) can be performed between the

relatedness matrix and the matrix describing actual pair

(belonging (1) and not belonging (0)). To our knowledge this

has only been tested once in natural populations (Prugnolle

et al., 2004).

8.5. Testing differentiation

For tests of genetic differentiation, there are again two

possibilities. For the first possible test one has to assume that all

loci are in agreement with Hardy–Weinberg expectations

because alleles, irrespective of their correlation within

individuals, are independently randomized among sub-sam-

ples. The exact test designed by Raymond and Rousset (1995a)

and performed in Genepop uses this principle and is the most

powerful test. However, because it is likely that some

correlation exists within individuals it is nevertheless safer

to undertake a test that takes into account the particular

genotypic structure within each sub-sample, i.e., randomising

individuals among sub-samples. Here the statistic used is the

log-likelihood statistic G, the best statistic in most situations

(see Goudet et al., 1996). The statistic is computed on allelic

counts but randomisations involve genotypes (hence the term

genotypic used for this test). A description of the algebraic

formula for the G statistic can be found in any statistical

textbook (e.g., Sokal and Rohlf, 1981) (see also Box 4).

http://gsoft.smu.edu/GSoft.html
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Observed number of alleles

Allele 1 Allele 2 Sum

Sample 1 2N1p1 2N1q1 2N1( p1 + q1) = 2N1

Sample 2 2N2p2 2N2q2 2N2( p2 + q2) = 2N2

Sum 2N1p1 + 2N2p2 2N1q1 + 2N2q2 2(N1 + N2) = 2N

If we assume all individuals were sampled in the same

population (no differences in allelic frequencies

between the two samples expected) then the best esti-

mate of the true allele frequencies are the mean of allele

frequencies across samples. Thus, the expected num-

bers of alleles become:

Expected number of alleles

Allele 1 Allele 2 Sum

Sample 1 2N1 p1þ2N2 p2
2N 2N1

2N1q1þ2N2q2
2N 2N1

2N1

Sample 2 2N1 p1þ2N2 p2
2N 2N2

2N1q1þ2N2q2
2N 2N2

2N2

Sum 2N1p1 + 2N2p2 2N1q1 + 2N2q2 2(N1 + N2) = 2N

PMO is the multinomial probability of observing the cell

frequencies if the observed data set is correct and PME is

the multinomial probability of observing the cell fre-

quencies if the expected data set is correct.

PMO ¼
2N!

2N1 p1!2N1q1!2N2 p2!2N2q2!

�
2N1 p1

2N

�2N1 p1

�
�

2N1q1

2N

�2N1q1
�

2N2 p2

2N

�2N2 p2
�

2N2q2

2N

�2N2q2

PME ¼
2N!

2N1 p1!2N1q1!2N2 p2!2N2q2!

�
�

2N1ð2N1 p1 þ 2N2 p2Þ
ð2NÞ2

�2N1 p1

�
�

2N1ð2N1q1 þ 2N2q2Þ
ð2NÞ2

�2N1q1

�
�
ð2N1 p1 þ 2N2 p2ÞN2

ð2NÞ2
�2N2 p2

�
�
ð2N1q1 þ 2N2q2ÞN2

ð2NÞ2
�2N2q2

The log-likelihood ratio or G is twice the natural loga-

rithm of the likelihood ratio or:

G = 2 ln(PMO/PME) which writes (see p. 736 and Box 17.6

in Sokal and Rohlf, 1981):

G ¼ 2N1 p1 lnð2N1 p1Þ þ 2N1q1 lnð2N1q1Þ
þ 2N2 p2 lnð2N2 p2Þ þ 2N2q2 lnð2N2q2Þ
þ 2N lnð2NÞ � 2N1 lnð2N1Þ
� ð2N1 p1 þ 2N2 p2Þ lnð2N1 p1 þ 2N2 p2Þ
� ð2N1q1 þ 2N2q2Þ lnð2N1q1 þ 2N2q2Þ � 2N2 lnðN2Þ

This quantity has additive properties, which means that

the G’s computed for several loci can be summed in

order to get a global G value. Randomizing individuals

across samples and computing the resulting global G

gives a possible value under the null hypothesis of free

migration of individuals across samples. Doing this a

great number of times offers a distribution of possible

G’s under the null hypothesis to which the observed one

can be compared. This is the G-based test implemented

in Fstat to test for population differentiation. Please note

that the two sample case is far from ideal and stands

here for the sake of simplicity.
Another advantage of this statistic is its additivity, enabling a

global test overall loci (as in Fstat).

8.6. Testing linkage between loci

There are two ways for testing linkage: between pairs of loci

or overall loci. For the test between pairs of loci, there is either

the exact test defined in Genepop and computed with the

Markov chain method, or the G-based test performed in Fstat.

The advantage of the G-based test is that a multi-sub-sample

test is available. But if all P-values in all sub-samples are

desired the two procedures give equivalent results. The

‘‘between-loci-pair’’ tests are designed when the knowledge of

‘‘which pair is in linkage disequilibrium’’ is of interest. In all

cases, a Bonferroni correction must be applied because of the

repetitive nature of the procedure. However, the number of

tests may be so great that such a correction may render the

test extremely conservative. For instance, with seven loci

and nine sub-samples, the potential number of tests is (7!/

(6 � 2)!2!)10 = 210, and thus the corrected level of signifi-

cance for a = 0.05 becomes a0 = 0.05/210 = 0.0002. Depend-

ing on sub-sample sizes and the degree of polymorphism of the

loci, this limit may lie beyond the reach. It may therefore be

wise to define a lower limit to the degree of polymorphism

required in order for the loci to be tested. For example, loci with

an allele present at more than 90% will rarely give a significant

test of association with any other locus and can thus be

disregarded for the analysis. What we need to do is to check if

loci are not ‘‘too’’ linked and thus provide information that is

not too redundant. There is no general agreement on how to

deal with this kind of multiple testing and it is the choice of

each empiricist to decide what to do (no correction, correction

by the number of loci pair, total correction, . . .). Multilocus

tests (e.g., Agapow and Burt, 2001) are specifically designed to

test for a global effect, like the one expected under a clonal

mode of reproduction. As suggested from simulations (De

Meeûs and Balloux, 2004), the most accurate measure of

multilocus linkage disequilibrium is Agapow and Burt’s rD

(Agapow and Burt, 2001). It is based on the index of

association IA (Brown et al., 1980; Maynard-Smith and Smith,

1998; Haubold et al., 1998), but renders the index independent

of the number of loci. This measure is also used as a statistic in

the randomisation test implemented in Multilocus (Agapow

and Burt, 2001). The test is more powerful than the between

pairs procedure within each sub-sample, but cannot be

performed over all sub-samples and can become significant

because of the linkage between some, but not all (as expected
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for clones) loci. The use of multilocus has thus some

restrictions. We should also remember that unless the studied

population is very large and at equilibrium, statistical linkage

between loci is always expected to occur, even if totally

panmictic.

8.7. Correlations between distance matrices

When a more or less linear, or at least monotonous,

relationship is expected between genetic differentiation and

another distance that may differentiate the same sub-samples, a

special procedure, called the Mantel test (Mantel, 1967), must

be used to detect and test it. Indeed, a classic regression analysis

should not be used because of the non-independence of the data.

A correlation is measured between the two matrices, the data in

one of the two matrices are then randomized and the correlation

between the randomized matrix and the other is measured each

time. After a certain number of randomisations, the P-value is

calculated as the number of times a value as great or greater

than that observed was found. The test may be uni- or bi-lateral

(Box 2). More discussion about the principle of the Mantel test

can be found in Manly (1985) (see also Box 5). When

examining correlation between matrices, two kinds of tests may

be considered: isolation by distance tests and correlation tests

between other kinds of matrices.

Isolation by distance was deeply investigated by Rousset

(1997) who showed that the statistic to use for genetic distance

should be FST/(1 � FST) rather than FST. He also showed that

wherever the studied species is distributed in two dimensions,

geographic distance should be transformed into its natural
Box 5. Let M1 and M2 two distance matrices between

the same pairs of items:

M1 ¼

m111 m112 m113 m114

m122 m123 m124

m133 m134

m144

2
664

3
775 and

M2 ¼

m211 m212 m213 m214

m222 m223 m224

m233 m234

m244

2
664

3
775

A measure of the correlation between the two matrices

can be given by

Z ¼
X

i

X
j

m1i jm2i j

Z can be used as a statistic in the Mantel test. In that case

the items of one matrix are randomized a number of

times and the corresponding Z measured between the

randomized matrix and the other one. The observed Z

can then be compared to the distribution of randomized

Z. Other statistics, as the ordinary Pearson coefficient of

correlation, can of course be used for the Mantel test.
logarithm, whereas no transformation is required for species

colonising one-dimensional (linear) habitat. It is worthy of note

that such a distinction is independent from the sampling design

but strictly refers to the habitat occupied by the species under

study (Rousset, 1997). Thus, linear habitats look rarer than two-

dimensional ones but are perfectly accurate in cases such as the

inter-tidal snail Bendicium vitatum (see Rousset, 1997 for a re-

analysis) or the seabird tick Ixodes uriae (see below Section

9.2) that are distributed within narrow seashore bands. The

rationale of Rousset’s recommendations is as follows. Isolation

by distance occurs whenever the amount of gene flow

exchanged between two populations, and hence the probability

QT of genetic identity between these populations, are

decreasing functions of the geographical distance. Now,

according to Eq. (9), QT appears both in numerator and

denominator of the ratio defining FST but only in the nume-

rator of that defining FST/(1 � FST) [note that FST/

(1 � FST) = (QS � QT)/(1 � QS)]. As a result, the simplest

linear function is expected for the increase in FST/(1 � FST)

with geographical distance. This function is directly connected

to the species demography at sampling time (Rousset, 1997;

Leblois et al., 2004). Let s be the average distance between the

parents’ and offspring’s birthplaces, i.e., the mean gene

dispersal range per generation. Let D be the average density

of reproducing adults onto the sampled area. Let Gd the

geographical distances separating two sampled populations.

Then, for diploids, FST/(1 � FST) � A + ln(Gd)/(4pDs2) and

FST/(1 � FST) � A0 + Gd/(4Ds2) in two- and one-dimensional

habitats, respectively. For haploids, regression slopes become

1/(2pDs2) and 1/(2Ds2) in two- and one-dimensional habitats,

respectively (Rousset, 2004). Slopes estimates can thus be used

for estimating Ds2 with additional biological information being

required to disentangle D and s. It is noteworthy that the

accuracy in Ds2 estimation is maximal for ’intermediate’

geographical distances: given m the mutation rate of the

assessed loci, the maximal accuracy is obtained for geogra-

phical distances ranging from s to 0:56s=
ffiffiffiffiffiffi
2m
p

in two-

dimensional habitats, and from s to 0:2s=
ffiffiffiffiffiffi
2m
p

in linear

habitats (Rousset, 1997, 2004; Leblois et al., 2004). This

technique was used to estimate the density and dispersal of the

cattle tick (Boophilus microplus) in New-Caledonia (Koffi

et al., in press).

It has been argued several times that the FST (or its estimator

u) is not the best suited measure for examining the genetic

differentiation between pairs of samples (e.g., Takezaki and

Nei, 1996; Tomiuk et al., 1998; Kalinowski, 2002). Thus,

depending on the hypothesis to be evaluated, using alternative

measures of population differentiation may be wiser. However,

it is probable that most measures will always converge on the

same result. For instance, the correlation between different

genetic distance measures, like between parasite infra-

populations and between their hosts (e.g., Prugnolle et al.,

2005c), was successfully assessed using a Mantel test between

Cavalli-Sforza and Edwards (1967) genetic distances between

worms infra-populations and the shared allele distance (Bow-

cock et al., 1994) between individual rats (P-value = 0.0005).

The software MSA (Dieringer and Schlotterer, 2003) can
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compute such distances. If FST estimates are both used for hosts

and parasites the test is not significant anymore (P-

value = 0.15) and when Cavalli-Sforza and Edwards are

studied for both hosts and parasites the P-value is 0.0113

(unpublished results). This illustrates that the choice of the

statistic is not completely neutral.

8.8. Assigning individuals to sub-samples

The multilocus genotype of an individual, may help to

compute its probability of belonging to a given sub-population

(Rannala and Mountain, 1997; Waser and Strobeck, 1998;

Cornuet et al., 1999). This probability is simply the expected

multinomial probability of observing a particular multilocus

genotype given the allelic frequencies at each locus in the sub-

population. Obviously, the quality of this probability depends

on that of the estimated allelic frequencies. The allelic

frequencies therefore should be computed based on a sufficient

number of individuals (�30) and a good number of

polymorphic loci (�10). This probability is usually referred

to as an assignment probability or assignment index. An

individual with a low probability of belonging to the

population from which it was sampled is likely to be a recent

immigrant. Such probabilities may therefore be used to detect

recent immigrants or to identify the population of origin

(providing that all possible populations were sampled) by

comparing the probability that an individual belongs to

different populations. For more details about assignment

probabilities and their applications, you may refer to Manel

et al. (2005).

8.9. Biased dispersal tests

It is sometimes desirable to compare the population genetic

structure of different categories of individuals that are

encountered in each sub-sample. This is typically the case

of males and females for dioecious species, or for infected and

uninfected hosts. There are specific procedures to test if males

disperse more or less than females or if infected hosts disperse

less (or more) than uninfected ones. The most general test is

implemented in Fstat and relies simply on the randomisation of

the status of individuals (e.g., male or female) within each sub-

sample, keeping the ratio (e.g., sex ratio) in each sub-sample

unchanged. It then measures the difference obtained between

the two categories for a chosen statistic (e.g., FST). The P-

value of the test will be the proportion of times a difference as

great or greater than the observed difference was obtained. This

test can be done using various statistics: the assignment index

and its variance corrected for population effects (AIc and

vAIc), F IS, FST, relatedness r computed as 2FST/(1 + F IT)

(Goudet et al., 2002), Hs or Ho. The most dispersive category of

individuals are indeed expected to display a lower AIc, a higher

vAIc, a higher F IS, a lower FST, r and Hs and a higher Ho.

Depending on the circumstances some of these statistics

behave better than others, but it seems that the FST is best in

most situations, followed by AIc and vAIc (Goudet et al.,

2002). In all cases, the most philopatric category must be
almost immobile and the other category fairly mobile for a

signal to be detected at least for a sex-biased dispersal (Goudet

et al., 2002).

Testing for sex-biased dispersal may also be achieved by

comparing autosomal markers to sex-linked markers. For

instance, in species where the female is the philopatric sex,

mitochondrial markers should be more structured than

autosomal ones. However, because effective population sizes

(Box 1) and mutation rates of these markers may significantly

differ, the comparison may be difficult (e.g., see Prugnolle

et al., 2002, 2003). Thus, comparing statistics obtained from

each sex for the same autosomal markers may be easier. In this

case, it should be noted that that the signal of a sex-biased

dispersal disappears at each generation and its observation thus

only reflects the dispersal events that occurred just before

sampling.

In some cases (e.g., not enough sub-samples) and for

certain statistics (e.g., FST), randomisation will not provide

reliable results or may not even be possible. In these cases,

some statistics, like F IS, Hs or linkage disequilibrium, can still

be compared between male and female individuals or between

infected and uninfected individuals using other procedures.

For instance, different loci (or pair of loci) can be used as

independent replicates (hence the need for independent

markers) and a Wilcoxon signed ranks test for paired data can

be performed (e.g., Siegel and Castellan, 1988), the pairing

unit being the locus or pair of loci (e.g., see Nébavi et al.,

2006).

8.10. Comparing sub-populations

Under certain circumstances individuals are sampled in

different types of sub-samples. This is the case of infra-

populations of infectious agents sampled in female hosts as

compared to infra-populations from male hosts. It may also

correspond to organisms sampled in woods compared to others

sampled in open fields within a heterogeneous landscape (e.g.,

bocage). In these situations, one may wonder if sub-samples

differ in terms of various statistics (as above). Randomising

sub-samples between categories, as undertaken in Fstat, allows

one to test if the difference observed between sub-sample types

is due to sampling error. Here again, when randomising the data

is not an option, a Wilcoxon test for paired data is still possible

(although less powerful).

8.11. Multivariate analyses

Multivariate analyses often provide convenient ways to

represent the overall organisation of genetic data and some-

times include statistical inferences.

The factorial correspondence analysis (FCA), adapted for

diploid organisms (She et al., 1987), positions each individual

in a K dimension hyperspace (K being the total number of

alleles summed over all loci) and projects each individual on

the plane defined by the axes that best explain the shape of the

scatter plot (same principle as for a least squares regression).

It has sometimes proven useful to arrange individuals
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according to their genetic relatedness. For example this was

done to study the occurrence of pathogens in a hybrid zone

of their host (e.g., Coustau et al., 1991) and is particularly

spectacular in the example extracted from Renaud (1988) and

presented in Fig. 2. This technique may also help detecting

cryptic population structure as in Solano et al. (2000) (see

next section). The software GENETIX 4.05.4 (developed

by Belkhir et al. and freely downloadable at http://www.

univ-montp2.fr/	genetix/genetix/genetix.html) provides a very

easy way to produce a FCA from genetic data (unfortunately,

the help file is only in French!).
Fig. 2. FCA projection of individual Barbus fishes on the plane defined by the

two first axes of the analysis, from genotypic data from nine enzymatic loci.

Pure Barbus barbus genotypes are circled in red, pure B. meridionalis geno-

types are circled in blue and hybrid between the two fish species are surrounded

by a green line. Each small circle corresponds to an individual fish, with the

black circles corresponding to fishes parasitized by the monogenean worm

Diplozoon gracile. Circles surrounded by a black line are superimposed

individuals (same genotypic coordinates on the two axes). The inversed U

shaped scatter is typical of data that progressively change from one state to

another (Guttman effect) (e.g., Wolff, 1996), like the alleles along a hybrid zone.

The parasites are clearly following this trend as they increase in frequency when

B. meridionalis allele numbers increase in individuals (Redrawn from Renaud,

1988).
Principal component analysis or PCA follows the same

principle as the FCA, but use continuous ordinal data instead of

disjunctive qualitative data. It aims at positioning groups of

individuals (sub-samples) in a multidimensional scale. The

advantage here is that the coordinates of sub-samples can be

used for further statistical analysis as in Nébavi et al. (2006).

The software PCA-GEN Version 1.2 (developed by Goudet and

freely downloadable at http://www2.unil.ch/popgen/softwares/

pcagen.html) produces this type of analysis from genetic data.

Canonical correspondence analysis (CCA) as implemented

by the software CANOCO (Ter Braak, 1986, 1987; Ter Braak

and Šmilauer, 2002) is a multivariate ordination method,

designed to directly assess the relationship between multi-

dimensional tables. It provides the advantage of integrating

ordination and regression techniques and enables randomisa-

tion tests for the fit of data to environmental variables. This has

been successfully used in some population genetic studies

(Škalamera et al., 1999; Angers et al., 1999).

Dendrograms provide a very convenient way to present

genetic data in a hierarchical arrangement. Such representa-

tions are very popular and found in any number of studies. One

of the privileged fields of application of tree construction can be

found in the molecular epidemiology of clonal organisms (e.g.,

see Taylor et al., 1999 for review).

8.12. Finding unknown population structure

There is sometimes no obvious direct evidence of population

structure. In such situations, sampling strategies may not meet

biological and/or ecological realities. If unknown biological/

ecological factors contribute to the shape of the genetic

architecture of the studied individuals it is then likely that these

phenomena have left a genetic signature. Several procedures

allow one to partition genetic datasets into potential sub-samples

(henceforth called sub-populations). For instance, Solano et al.

(2000) found huge heterozygote deficits in tsetse fly micro-

satellites that null alleles (see Section 8.14) could not totally

explain. A FCA helped to identify the source of this observation

as the result of a Wahlund effect (i.e., a hidden population

structure). Other methods, based on Bayesian statistics and

Markov Chain Monte Carlo simulations (Structure 2.01,

Pritchard et al., 2000, http://pritch.bsd.uchicago.edu/software/

structure2_1.html) or stochastic optimization (BAPS 4, Corander

et al., in press, http://www.rni.helsinki.fi/	jic/bapspage.html)

can also be used to infer the likelihood of hidden genetic structure

in the data set as in Ravel et al. (in press).

8.13. Estimating effective population sizes and dispersal

We have already seen in Section 8.7 that demographic

parameters could be estimated from genetic data from isolation

by distance frameworks. In other cases, some demographic

parameters can also be estimated.

Two different methods allow estimating effective population

sizes (Box 1). Temporal studies allow estimating the variance

effective sizes (Ne) of repetitively sampled populations

(Waples, 1989). The software MACLEEPS 1.1 (Anderson

http://www.univ-montp2.fr/~genetix/genetix/genetix.html
http://www.univ-montp2.fr/~genetix/genetix/genetix.html
http://www.univ-montp2.fr/~genetix/genetix/genetix.html
http://www2.unil.ch/popgen/softwares/pcagen.html
http://www2.unil.ch/popgen/softwares/pcagen.html
http://pritch.bsd.uchicago.edu/software/structure2_1.html
http://pritch.bsd.uchicago.edu/software/structure2_1.html
http://www.rni.helsinki.fi/~jic/bapspage.html
http://www.rni.helsinki.fi/~jic/bapspage.html
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et al., 2000) (downloadable at http://www.stat.washington.edu/

thompson/Genepi/Mcleeps.shtml) performs maximum-likeli-

hood estimates for different Ne using the allele frequencies

shifts between generations. The computation assumes that

selection, migration and mutation are negligible in changing

allelic frequencies, compared to drift. A 95% confidence

interval (CI) can be estimated (Anderson et al., 2000). Spatial

studies allow estimating the inbreeding effective size of the

populations using the software ESTIM 1.2 (Vitalis and Couvet,

2001a) (freely downloadable by anonymous FTP at ftp://

isem.isem.univ-montp2.fr/pub/pc/estim). This software per-

forms estimates of the two-locus identity disequilibria, h,

within populations, together with a single locus parameter

F = Q1,i � Q2/(1 � Q2), where Q1,i is the probability of identity

of a pair of genes in sub-population i, and Q2 the probability of

identity for two genes in two different sub-populations (Vitalis

and Couvet, 2001b). These two parameters, F and h, both

depend on local Ne and m, the immigration rate, but not on

‘‘nuisance’’ parameters such as the mutation rate or mutation

model (Vitalis and Couvet, 2001b,c). However, the selfing and

recombination rates must be known. An example of how these

two methods can be used and a discussion on their merits and

problems can be found in Meunier et al. (2004b). Note that a

synthetic method, taking into account information at both space

and time scales, is now available (Wang and Whitlock, 2003)

and a computer program MLNE estimating both Ne and m, can

be downloaded for free at http://www.zoo.cam.ac.uk/ioz/

software.html.

8.14. Some special cases

Null alleles are often met in population genetics studies, but

are frequently ignored. Null alleles may be frequent in

allozymes (Gaffney, 1994; Nébavi et al., 2006) and in DNA

markers such as microsatellites (Paetkau and Strobeck, 1995;

Pemberton et al., 1995; Brookfield, 1996). In allozymes, this

would correspond to a loss of function and thus may not be

neutral (i.e., deleterious) unless the organism keeps it at a

heterozygous state as in clonal organisms such as Candida

albicans (Nébavi et al., 2006). For DNA markers, it simply

corresponds to a mutation in one of the primer sequences, such

that the PCR amplification is not successful (Paetkau and

Strobeck, 1995). The result is that many individuals that are

heterozygous for a null (invisible) allele and another allele are

falsely interpreted as being homozygous for the visible allele,

which will artificially inflate the F IS estimate. An easy way to

check for null alleles is to observe the variation of F IS across

loci (e.g., De Meeûs et al., 2002a; Hurtrez-Boussès et al., 2004).

Because null alleles are not expected to be present at the same

frequency across all loci, the presence of such alleles is

expected to strongly inflate the variation of heterozygosity

across loci. Some relatively easy procedures are available to

estimate the frequency of null alleles in a data set (e.g.,

Brookfield, 1996) and a software especially designed for

microsatellite markers is also available (Micro-checker V

2.2.3., Van Oosterhout et al., 2004, available at http://

www.microchecker.hull.ac.uk). A more subtle phenomenon,
called short allele dominance or large allele drop-out, can also

arise (Wattier et al., 1998; De Meeûs et al., 2004a; Ravel et al.,

in press). Here, for reasons that remain unclear, a competition

for the polymerase exists such that shorter alleles have an

amplification advantage over longer ones in heterozygous

individuals. This phenomenon is nasty as it changes both F IS

and allele frequency estimates (De Meeûs et al., 2004a). A

simple way to check for it is to regress F IS measured on each

allele against allele size (De Meeûs et al., 2004a). Micro-

checker also identifies when this phenomenon is present.

When working from a very small amount of DNA or

degraded material, it may happen that only one of the two

alleles of a heterozygous individual is amplified at random,

without any connection to allele size. This phenomenon is

called allelic drop-out (e.g., Smith et al., 2000; Schneider et al.,

2004; Criscione and Blouin, 2005b). It can be detected by

inconsistencies between two amplifications of the same

individual.

Clonal organisms must be treated with different tools

because the consequences of this reproductive mode on the

distribution of genetic information within individuals, between

individuals, among populations and across loci. The theory and

its application have attracted recent attention and have been the

subject of recent reviews (Halkett et al., 2005; De Meeûs et al.,

2006).

The classical situation with three levels of population

structure (individual, sub-population and total population) is

inappropriate if more hierarchical levels are involved. Instead

of separating the data into independent replicates and using

multiple tests, the approach proposed by HierFstat (Goudet,

2005, downloadable at http://www2.unil.ch/popgen/softwares/

hierfstat.html) offers the possibility to analyse populations with

any number of hierarchical levels and partitions the genetic

variance into each of its within and between level components

in a single analysis (e.g., see Trouvé et al., 2005, Nébavi et al.,

2006).

9. Case studies

9.1. The population genetics of P. falciparum in Kenya

The population genetic structure of P. falciparum, the agent

of malignant malaria, has been shown to be highly inbred in

regions of low infectivity. In high-infectivity regions, it is often

thought to be panmictic, or nearly so, although there were little

supporting evidence for this claim. The matter can be settled by

investigating the parasite’s genetic make-up in the midgut

oocysts of the mosquito vector, where diploidy occurs. Indeed,

using a very original sampling design, Razakandrainibe et al.

(2005) have investigated genetic polymorphism of P. falci-

parum oocysts from 145 mosquitoes in Kenya, where malignant

malaria is perennial and intense. As seen in Fig. 3, there is

considerable inbreeding, about 50% on average as seen from

the F IT. The inbreeding is due to selfing (about 25% estimated

from Eq. (6)) and to the non-random distribution of oocyst

genotypes among mosquito guts. All loci appeared to be in

linkage disequilibrium. These results confirm that even in

http://www.stat.washington.edu/thompson/Genepi/Mcleeps.shtml
http://www.stat.washington.edu/thompson/Genepi/Mcleeps.shtml
ftp://isem.isem.univ-montp2.fr/pub/pc/estim
ftp://isem.isem.univ-montp2.fr/pub/pc/estim
http://www.zoo.cam.ac.uk/ioz/software.html
http://www.zoo.cam.ac.uk/ioz/software.html
http://www.microchecker.hull.ac.uk/
http://www.microchecker.hull.ac.uk/
http://www2.unil.ch/popgen/softwares/hierfstat.html
http://www2.unil.ch/popgen/softwares/hierfstat.html
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Fig. 3. Inbreeding statistics for diploid Plasmodium falciparum oocysts collected from Anopheles gambiae mosquitoes. L1–L7 refer to the seven microsatellite loci.

FIS measures the deficiency of heterozygous genotypes as a result of self-fertilization within individual mosquito guts; FST measures the deficiency of heterozygotes

resulting from the non-random distribution of oocyst genotypes among mosquito guts; FIT is the overall deficiency of heterozygotes in a population, resulting from

both effects combined. From Razakandrainibe et al. (2005).
highly endemic zones, this parasite is far from panmictic and is

composed of highly divergent, hence diverse, infra-populations

across hosts, and are of considerable significance both

evolutionarily and epidemiologically, particularly in relation

to the spread of multilocus drug and vaccine resistance.

9.2. The population genetics of Ixodes ticks and

epidemiology of Lyme borreliosis

Tick-borne diseases make up the overwhelming majority of

human vector-borne infections in the temperate zones of the

Northern Hemisphere, among which Lyme borreliosis has

major public health and economic effects (Gubler, 1998). To

date many questions remain unanswered regarding the

epidemiology of this disease and the variability of its clinical

manifestations (Hubbard et al., 1998). Using microsatellites

and molecular probes, new insights could be obtained about the

population biology of Lyme borreliosis vectors in Western

Europe, Ixodes ricinus on the mainlands (De Meeûs et al.,

2002a, 2004b) and I. uriae on sea birds in coastal environments

(McCoy et al., 2001, 2003, 2005a,b). For example, the use of

biased dispersal tests suggested a sex-biased dispersal (female

ticks are philopatric) (De Meeûs et al., 2002a) in I. ricinus ticks,
along with a biased dispersal of infected ticks (ticks infected

with Borrelia afzelii disperse less) (De Meeûs et al., 2004b). As

dispersal in ticks is host-dependent, these results suggest a

biased host specificity of ticks of different sex and infectious

status. For I. uriae, the coastal vector of Lyme borreliosis,

strong structure has been found between ticks of different sea

bird species in both hemispheres (Figs. 4 and 5), suggesting that

host-race formation is a recurrent process (McCoy et al., 2001,

2005b). This degree of host specificity suggested a possible

effect of host species behaviour on effective gene flow in the

tick. This was confirmed by isolation by distance analyses

showing strong discrepancies between I. uriae ticks from

kittiwake and puffin hosts (Fig. 6) (McCoy et al., 2003).

However, this dependency on host behaviour (in particular

movements between and within colonies) is not reflected by the

population genetic structure of the hosts as both kittiwakes

(seven microsatellite loci) and guillemots (six microsatellite

loci) seem to be panmictic, or nearly, at a continental scale

(McCoy et al., 2005a; Riffaut et al., 2005). Dispersal of ticks

between the two hemispheres seems to be entirely blocked

according to the FST measured (0.38) that was nearly equal to

the maximum possible FST (1 � Hs = 0.42) given the

variability of the marker. These different results highlight



T. de Meeûs et al. / Infection, Genetics and Evolution 7 (2007) 308–332 325

Fig. 4. Sampling sites for Ixodes uriae in the Northern and the Southern hemispheres. For the Northern hemisphere, black-legged kittiwake (Rissa tridactyla)

colonies are in blue, common guillemot (Uria aalge) colonies are in yellow and Atlantic puffin (Fratercula arctica) colonies are in red. For the Southern hemisphere,

king penguin (Aptenodytes patagonicus) colonies are in blue, macaroni and rock hopper penguins (Eudyptes chrysocome, E. chrysolophus) are in red and yellow,

respectively. Sites in black correspond to mixed colonies where at least two bird species breed in sympatry. From McCoy et al. (2005b).
how complex the epidemiology of Lyme borreliosis can be and

indicate the focus of future studies. The sex of the vector, the

effect of the micropathogen on hosts (including the vectors) and

host behaviour are all relevant. The host specificity of the

coastal vector adds a new dimension to the epidemiological

picture with a whole string of consequences for dispersal

patterns of this pathogenic agent and the still unsolved links

with its inland cycle.
9.3. The population genetics of the S. mansoni–

Biomphalaria glabrata–Rattus rattus system

Schistosome flukes are dioecious trematodes (separate

sexes) responsible for one of the most important human

parasitic diseases (schistosomiasis, also known as bilharziasis)

in tropical countries. Some 200 million people are infected, of

which 20 million are thought to suffer severe consequences of
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Fig. 5. PCA analysis of genotypes at eight microsatellite loci of different sub-

samples of the tick I. uriae from different sea bird colonies. The colours

populations are as in Fig. 4. For the Northern hemisphere, the first two axes

explained more than 68% of the dispersion of the data whereas for the Southern

hemisphere the first two axes explained more than 58% of the dispersion of the

data. From McCoy et al. (2005b).

Fig. 6. Isolation by distance test between genetic differentiation, measured as

FST/(1 � FST), between pairwise I. uriae sub-samples and geographic distance

(km) measured along the Atlantic coast from kittiwake (in blue) and puffin (in

red) colonies. The linear option of regression between FST/(1 � FST) and

geographical distances was chosen since the habitat of I. uriae is limited to

the narrow coastal band where seabirds reproduce. The test was significant only

for kittiwake ticks (Mantel test, P-value = 0.004), whereas no relationship was

found for puffins (P-value = 0.917). From McCoy et al. (2003).

Fig. 7. Relationship between the shared allelic distance (Dsa) computed

between individual rats and Cavalli-Sforza and Edwards genetic distance

(DCSE) computed between schistosome infra-populations harbored by these

rats (R = 0.29, p = 0.0005) (From Prugnolle et al., 2005c).
infection (Chitsulo et al., 2000), making this parasitic disease

ranking second after malaria (Morel, 2000). In the insular focus

of Guadeloupe (French West Indies), S. mansoni has perma-

nently shifted from humans toward the black rat R. rattus, which

is now its principal (if not only) host on this island (e.g., Prugnolle

et al., 2002). This enabled us to sample adult worms that live in

the mesenteric venules of the vertebrate host. In water, eggs hatch

into swimming larvae (miracidia) that must infect an aquatic

snail (B. glabrata). From the snail host, the parasite produces a

massive amount of clonal cercariae (second infective stage) that

must then find a rat to complete the cycle. By sampling the infra-

population of worms in rats at a local scale and analysing their

genotype at seven microsatellite loci, Prugnolle et al. (2002)

showed a sex-biased genetic structure (females are more

differentiated between infra-populations, biased dispersal test).

Based on the life cycle and the strong heterozygote excesses

observed (F IS = �0.1 for female schistosomes), this could not be

interpreted as the result of a sex-biased dispersal (females

disperse less) alone. Further studies showed that this pattern

probably emerged as an interaction between the effect of a strong

variance in clonal success (Prugnolle et al., 2005a,b) along with

selective processes (Prugnolle et al., 2004) and a possible role of

host’s sex (Caillaud et al., in press). At a regional scale, Prugnolle

et al. (2005c) genotyped all protagonists with microsatellite loci
and using Mantel tests demonstrated a strong pattern of isolation

by distance for the snails and a structuring that was independent

of geography for both rats and schistosomes. A highly significant

correlation was also shown between rats and the schistosome

infra-populations they harboured (Fig. 7). This confirmed that

rats were the real dispersal vehicles of schistosomes.

9.4. The hidden population structure of tsetse flies

Glossina palpalis gambiensis is a riverine West African

tsetse fly that transmits trypanosomes causing both human and

animal African trypanosomiasis. A preliminary survey of this

species in the site of Nyafaro in Burkina Faso revealed a strong

and significant heterozygote deficit at this site. A FCA analysis
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Fig. 8. Projection of tsetse fly (G. palpalis gambiensis) individuals, based on

their genotype at three microsatellite loci, on the two first axes of FCA analysis.

Two main clusters, where a FIS can be computed, can be identified (A,

surrounded in blue and B, surrounded in red). Within each group, FIS is not

significantly different from 0. However, this is not the case when all individuals

are considered together (FIS = 0.2, P-value < 0.001). The percentage of total

inertia explained by each axis (which represent how well the axis fits the data),

is provided (From Solano et al., 2000).

Fig. 9. Demonstration of the implications of an incorrect sampling design on

estimation of the within sub-population fixation index (FIS) for the Candida

albicans data set. Samples from male patients are represented with solid squares

and samples from female patients with solid circles. It is easy to see that when

each male or female patient is considered as a sub-population, the picture

provided by the analysis is very different from that observed when all male or all

female patients are pooled, or when all patients (solid triangle) are considered

together. Obviously, in this case, the real sub-populations are within patients and

the other measures reflect strong Wahlund effects.

revealed that this sample was heterogeneous and composed of

at least two main groups (Fig. 8) where the heterozygote deficits

did not stay significant anymore (Solano et al., 2000). A re-

analysis of these data with BAPS (cf. Section 8.12) clustered

the data into nine putative sub-populations where the

heterozygote deficits dropped to negative values (unpublished).

This suggested that tsetse flies are strongly clustered into small

sub-populations and that the traps used to capture these flies are

sufficiently attractive to catch individuals from different sub-

populations, thus creating a Wahlund effect. A recent survey in

Bonon (Côte d’Ivoire) with five microsatellite loci of Glossina

palpalis palpalis revealed that a great part of heterozygote

deficits could be explained by null alleles and short allele

dominance (Ravel et al., in press). However, the use of BAPS

allowed to partition the data into many clusters, unrelated to

sampling site (trap) in which a significant drop of F IS could be

observed, thus suggesting again a strong Wahlund effect in this

sub-species as well (see Ravel et al., in press).

9.5. The population structure and reproductive mode

of C. albicans

C. albicans is a diploid opportunistic yeast present in the

gastrointestinal and genitourinary flora of most healthy humans

and other mammals. It is seriously pathogenic only in

immunocompromised patients (Hull et al., 2000; Berman and

Sudbery, 2002). The sexual cycle was demonstrated under

experimental conditions but, how diploidy is restored, how often

it occurs in the wild and what kind of population structure this

yeast displays, remain largely unknown. A recent study by
Nébavi et al. (2006) has shed new light on all of these aspects.

The authors analyzed a sample consisting of five isolates in each

of 42 HIV+ patients (19 women and 23 men) genotyped for 14

enzymatic loci. This sampling design, combined with the use of

PCA, HierFstat and the latest clonal genetic tools (De Meeûs and

Balloux, 2005; De Meeûs et al., 2006) demonstrated an almost

total (if not absolute) clonal mode of reproduction and extremely

strong genetic differentiation between individual patients.

Female patients apparently maintained a higher genetic diversity

of C. albicans strains, suggesting larger infra-populations of this

yeast in female environments. Nonetheless, these results were

indicative of a very low level of strain exchange between patients,

and/or a modest infection role of environmental strains (each

individual keeps its own strains). This study also indicated the

crucial importance of sampling design, particularly with these

kinds of organisms, in order for correct inferences to be made

(illustrated by Fig. 9). Interestingly, the Wahlund effect produced

by inappropriate sampling translates into F IS values expected

under panmictic conditions. In particular, the classic sampling

design for such organisms of one isolate per individual patient

with all patients pooled into a single sample would have

produced a F IS very close to 0 (Fig. 9).

9.6. The population structure and reproductive modes

of G. truncatula and F. hepatica

The liver fluke F. hepatica is a common parasite of the liver

of many different vertebrates including man (see Hurtrez-
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Boussès et al., 2001 for review), causing fasciolosis, a re-

emerging disease. It affects ca. 17 millions of people around the

world (Meunier et al., 2001) and 180 millions people are

exposed at the risk of disease (e.g., Hurtrez-Boussès et al.,

2001). Adult worms sexually reproduce in the vertebrate host,

are monoecious and probably self-compatible. In the inter-

mediate host, a freshwater snail (mainly G. truncatula), the

parasite experiences an intensive asexual multiplication. Using

microsatellites, Meunier et al. (2001, 2004a) evidenced a

preferential selfing mode of reproduction of the mollusc host,

that contrasts with the apparent panmixia of the parasite

(Hurtrez-Boussès et al., 2004). It was also shown that the

Bolivian Altiplano, where fasciolosis prevalences reach the

highest known values in human (Mas-Coma et al., 1999), is

colonized by a single G. truncatula genotype. This fact is most

likely explained by a recent and strong bottleneck (Meunier

et al., 2001). This may explain in part the success of the fluke,

which has to adapt to only one kind of mollusc and suggests that

control campaign against snails could easily be undertaken with

a very low threat of resistance evolution (Meunier et al., 2001).

10. Conclusion

After such a long article, it is perhaps wiser to conclude with

a short discussion. We hope that we have convinced the reader

about the interest of using molecular and population genetics

tools for examining the population biology of infectious agents,

their vectors and their reservoirs. We hope also that the

references and techniques described in this review will allow

some scientists interested in developing such approaches to

begin with a high chance of success. We would like to insist on

some very important aspects that are still too often neglected in

molecular epidemiological studies. The sampling design is

crucial, as testified by the Plasmodium, Schistosoma and

Candida examples. Unfortunately, these examples still repre-

sent the rarest cases. Other sampling designs would have led to

completely different pictures and thus to poor (if not wrong)

inferences. Using clustering techniques, as employed for the

tsetse example, enables the diagnosis of a wrong sampling

design, but is not a cure. Thus, much remains to be done. The

growing access to whole genome sequences will provide

extremely useful tools in this perspective, as it will enable

researchers to compare neutral markers with markers of known

utility. Such knowledge will surely bring invaluable incite into

the processes involved in the epidemiology and evolutionary

genetics of infectious agents. ‘‘Parasite molecular ecology is

still in its infancy, but it promises to be a rewarding field for

those who embrace it’’ (Criscione et al., 2005).
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De Meeûs, T., Balloux, F., 2005. F-statistics of clonal diploids structured in

numerous demes. Mol. Ecol. 14, 2695–2702.
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alternation of sexual and asexual reproduction: a model and data from

schistosomes. Mol. Ecol. 14, 1355–1365.
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De Meeûs, T., 2005c. Dispersal in a parasitic worm and its two hosts and its

consequence for local adaptation. Evolution 59, 296–303.

Queller, D.C., Goodnight, K.F., 1989. Estimating relatedness using genetic

markers. Evolution 43, 258–275.

Rannala, B., Mountain, J.L., 1997. Detecting immigration by using multilocus

genotypes. Proc. Natl. Acad. Sci. U.S.A. 94, 9197–9221.

Ravel, S., de Meeus, T., Dujardin, J.P., Zézé, D.G., Gooding, R.H., Dusfour, I.,
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T. de Meeûs et al. / Infection, Genetics and Evolution 7 (2007) 308–332 331
Shuker, D.M., Reece, S.E., Whitehorn, P.R., West, S.A., 2004. Sib-mating does

not lead to facultative sex ratio adjustment in the parasitoid wasp, Nasonia

vitripenis. Evol. Ecol. Res. 473–480.

Siegel, S., Castellan Jr., N.J., 1988. Nonparametric Statistics for the Behavioral

Sciences, 2nd ed. McGraw-Hill, New York.
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Glossary

Allele: Hereditary state at which a locus can be. In diploids each individual has

two allele at each locus, that may be identical (homozygous) or different

(heterozygous).

Assortative mating: A process that makes sexual partners to mate if pheno-

typically similar.

Autosome: Designs an ordinary chromosome expectedly present in pairs in

each normal zygote or diploid individual (antonymous to heterosome).

Bottleneck: A demographic process where a population experiences a strong

drop in individual number.

Clonality: Reproduction with no sex. The descent is identical to the parental

individual.

Codominant: Describes a genetic marker where all heterozygotes are recog-

nisable from all homozygotes.

Dioecious: Synonymous to gonochoric, it means that the species are subdi-

vided into males and females (antonymous to monoecious).

Diploid: Characterizes an organism or a cell with a double set of nuclear

genetic material (chromosomes), at the exception of sex chromosomes when

there are any.
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Directional selection: A selective process that tend to increase or decrease (one

direction) the frequency of an allele in the population.

Dominant: Describes a genetic marker where an allele covers the expression of

other alleles in heterozygous individuals. Applies also to alleles (anton-

ymous to recessive).

Drift (random genetic): Describes the process by which allelic frequencies

change from one generation to the other as a result of the random

sampling of individuals (zygotes or gametes that form zygotes or

adults) that survive to form the next generation in a population of finite

size.

Gene: A portion of coding DNA, i.e., that is transcribed into a mRNA.

Genotype: The complete set of alleles displayed by an individual at a specific

locus or a specific set of loci (when specified).

Haploid: Characterizes an organism or a cell with a simple set of nuclear

genetic material (chromosomes). Gametes are typically haploid.

Heterogamy: A process where sexual partners or gametes are more likely

attracted by genetically different individuals (antonymous to homogamy).

Heterosis: A genome wide selective phenomenon where some kind of advan-

tage characterises the most heterozygous individuals.

Heterosome: Synonymous to sex chromosome. In dioecious species, a kind of

chromosome the composition of which differs between male and females

(e.g., XY chromosomes in mammals, ZW chromosomes in birds) (anton-

ymous to autosome).

Heterozygous: Refers to a locus in a diploid individual for which the two alleles

are different (antonymous to homozygous).

Homogamy: A process where sexual partners or gametes are more likely

attracted by genetically similar individuals (antonymous to heterogamy,

see also assortative mating).

Homoplasy: A phenomenon describing the identity between to alleles that do

not share a common ancestry, which are then said identical by state.

Homozygous: Refers to a locus in a diploid individual for which the two alleles

are identical (antonymous to heterozygous).

Infinite Allele Model (IAM): A mutation model where each mutation produces

a new allele that did not exist in the population and will not be recovered if

lost. Does not allow homoplasy.

Inbreeding: Characterising the proportion of identical by descent alleles within

individuals as a result of closed systems of mating (selfing, sib-mating) or

the limited population sizes. Note that when only due to population size, the

inbreeding coefficient (probability of identity by descent in individuals) is

identical to the relatedness between individuals (probability of identity by

descent of genes between individuals).

Infinite island model: An island model where the number of sub-populations

(n) is infinite.

Island model: A theoretical subdivided population, with non-overlapping

generations, where individuals are arranged into n sub-populations (islands)

of identical size N composed, at each generation, of mN migrant individuals

that may come from any of the n sub-populations and (1 � m)N resident

individuals.

K allele model (KAM): A mutation model where each mutation changes the

affected allele into any of the K possible ones, including itself, with an equal

probability. The lower K the more frequent homoplasy is.

Linkage disequilibrium: A characteristic expressing the non-random associa-

tion between different loci (generally by pair). Many different factors
(population structure, closed system of mating, selection, etc.) can generate

and maintain statistical associations between loci.

Locus: Describes a portion of DNA at a specific position in the genome. It does

not necessarily correspond to a gene.

Mutation: Occurs when a mistake is made during DNA duplication.

Monoecious: Synonymous to hermaphrodite (antonymous to dioecious).

Neighbourhood model: A theoretical population where migration of each

individual is limited by distance. Thus, the relatedness between individuals

is a decreasing function of the distance separating them even if no sub-

division exists.

Neutral: Applies to a locus the polymorphism of which is not under any kind of

selective pressure (antonymous to selected).

Overdominance: A selective process where the survival and/or fertility of

individuals is enhanced if heterozygous at a given locus.

Pangamy: Describes a sexually reproducing population where all individuals

randomly pair for copulation.

Panmixia: Describes a sexual kind of reproduction where zygotes are produced

by a random association of any pair of gametes from the population.

Phenotype: The expression of a character that may be hereditary (e.g., the

colour of the eyes). A phenotype can be translated into a genotype (e.g., for

isoenzymatic loci).

Polymorphism: Condition describing genetic variation (more than one allele) at

a locus in a data set.

Population: A set of individuals sharing the same demographic parameters

(population regulation) and more likely sharing a common ancestry as

compared to members of other such populations, except for migrants.

Recessive: Describes an allele that is hidden when at a heterozygous state

(antonymous to dominant).

Selection: The process by which the expected survival and/or fertility of an

individual depends on its genotype in a more or less direct way.

Selected: Applies to a locus the polymorphism of which is submitted to

selective pressures (antonymous to neutral).

Selfing: A sexual reproductive mode where a functional hermaphrodite indi-

vidual self fertilize its proper eggs with its proper spermatozoids.

Sex ratio: The ratio of the number of males to the number of females in a

population. Is equal to one when balanced.

Stepwise mutation model (SMM): A mutation process where each mutation

process increases or decreases the size of the affected allele by one unit

(step) with an equal probability. With such a mutation process, homoplasy is

frequent and a similarity in size can be translated into a probable recent co-

ancestry between the alleles compared.

Stepping-stone model: A theoretical subdivided population where migrants are

only exchanged between neighbouring sub-populations.

Transition: A point mutation that changes a purine into the other purine

(A$ G) or a pyrimidine into the other pyrimidine (C$ T) (antonymous

to transversion).

Transversion: A point mutation that changes a purine into a pyrimidine or a

pyrimidine into a purine (A$T, A$ C, G$> C, G$ T) (antonymous to

transition).

Underdominance: A selective process where the survival and/or fertility of

individuals is decreased if heterozygous at a given locus.

Zygote: The result of the fusion of two gametes. The term egg is sometimes

used instead.
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